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Computation of Best One-Sided L1 Approximation* 

By James T. Lewis 

Abstract. A computational procedure based on linear programming is presented for 
finding the best one-sided L1 approximation to a given function. A theorem which ensures 
that the computational procedure yields approximations which converge to the best 
approximation is proved. Some numerical examples are discussed. 

1. Introduction. Recently there has been an interest in the problem of finding a 
best one-sided approximation to a given function; that is, an approximation which is 
everywhere below (or everywhere above) the function. In [6], [7], [8] the measure 
of approximation is the uniform norm; in [1], [3], [8] the integral L, norm. A com- 
putational procedure for the latter problem is presented and analyzed in this paper. 

Let f(x) be a real-valued continuous function on [a, b], a(x) a positive continuous 
weight function on [a, b]. Assume the set {l1, - - , 0n} of continuous functions on 
[a, b] is a Chebyshev system; that is, any nontrivial linear combination has at most 
n - 1 zeros in [a, b]. Of course the most commonly used Chebyshev system is the 
set of powers I 1, x, , x-' }. Let ?(f) denote the set of approximations to f from 
below; i.e., the set of all real linear combinations En,_, apip(x) such that 

En.J a4i+(x) 
? f(x) for all x C [a, b]. Then p* C ?(f) is a best weighted L1 approximation to f 

from below on [a, b] if 
f 

a(x)(f(x) - p(x)) dx = inf {f a(x)(f(x) p( x: p P E (f)} 

Best approximation from above is defined analogously. 
Existence of a best approximation is straightforward; the uniqueness question is 

more involved. It has been shown [3] that if f is differentiable on [a, b] and 
{+l ... , O..} is a differentiable Chebyshev system (each p. is differentiable and any 
nontrivial linear combination of the derivatives has at most n - 2 zeros in [a, b]), 
then the best approximation from below is unique. The following elegant theorem 
from [1] shows that in certain circumstances the best approximation from below by 
ordinary algebraic polynomials may be found by interpolation of f and f' at suitable 
points. 

THEOREM 1. Let n = 2k, f continuous on [a, b], f ')(x) ? O for all x in (a, b). Then 
the algebraic polynomial p* of best weighted L1 approximation of f from below on 
[a, b] of degree less than or equal to n - I is the unique polynomial defined by the equia- 
tions: 

(1.1) p " (Y' f - Y P*'Yi = NMr 
\-S/o\ 1, . .. kr 
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where the y, are the zeros of the polynomial of degree k orthogonal to 1, x, - , x*-1 with 
inner product 

b 

(g, h) = f a(x)g(x)h(x) dx. 

Proof. [1, p. 152]. 
Analogous theorems hold for n odd, for approximation from above, and also if 

f(n)(x) < 0 for all x in (a, b). The polynomial satisfying (1.1) is given explicitly by 
(cf. [2, p. 37]) 

(1.2) p*(x) = E t(y,)(1 - f ) (x -Yi)12(X) + E f'(Yi)(x _ Yi)12(x) 

where 7r(x) = (x - y1) (x - y), li(x) = 7r(x)/((x -y)7r'(yj)) 

If f ')(x) is not one-signed on (a, b), the problem of computing the best one-sided 
approximation remains. In Section 2 a computational procedure based on linear 
programming is presented and analyzed. This method is analogous to one way of com- 
puting the best unconstrained LI approximation. In Section 3 numerical experience 
with the method is discussed. 

2. The Computational Procedure. We again consider the problem of approxima- 
tion from below from a Chebyshev systemn {pI, * *, 4.} The basic idea of the com- 
putational procedure is to obtain the best weighted L1 approximation to f from 
below on [a, b] as a limit of best weighted (with a different weight function) L1 ap- 
proximations to f on finite point subsets of [a, b]. Let Xm-= {xi; j = 1, . * , m} be 
a subset of [a, b] with a _ xo < xl < ... < xmn = b and mesh size 
lAm = max ijSm xi - xi1 . The appropriate weighted problem on X,,, to consider is 

(2.1) min Eo a(xj)(f(xj) - pAx x))(x x-,) 
p j=1 

(2.2) subject to p(xj) < f(x), j = 1, , m. 

The existence of a solution to this problem can be easily established; however, in 
general the solution will not be unique, as in the following example. 

Example (nonuniqueness). Let Xm = {-1, 0, I }, x0 = -2; f(-1) = 1, f(O) = 0, 
f(l) = 1; a(-1) = al(O) = a(l) = 1. It can be verified that for any B ? [- 1, 1] 
the polynomial ox is a best weighted L1 approximation to f from below on X", of 
the form a, + a2x. 

For a given set Xm a solution of the problem (2.1), (2.2) can be obtained by linear 
programming techniques; this will be discussed in more detail in Section 3. Now let 
X, m = 1, 2, - - *, be a sequence of subsets of [a, b] such that u,, -+ 0 as m -* o 

and let Pm be a solution of the problem (2.1), (2.2) on Xm. We wish to analyze the 
behavior of pm as m -> c. The following lemma dealing with the approximation of 
an integral by a Riemann sum will be useful. Let 

co(h; ,u) = sup { Ih(x) - h(y)I: x, y E [a, b], Ix - yI < q } 

be the modulus of continuity of the function h on [a, b]. 
LEMMA 1. Let a(x), g(x) be continuous on [a, b] and Xm as described above. Then 
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Ib m 

f cx(x)g(x) dx - a a(xj)g(x,)(xi - xi-,) ? (b - a)wo(ag; A.) 

Proof. Cf. [11, p. 79]. 
Notice that since w(ag; Mm) 0 as m -> o the difference between the integral 

and the sum tends to zero as m o . The main result of this paper, which is the ana- 
logue of a theorem due to Motzkin and Walsh [9, p. 394] on unconstrained approxi- 
mation, is now stated and proved. The proof is patterned after that of [11, p. 80]. 

THEOREM 2. Let f be a continuousfunction on [a, b]; Xm = {Xi j 1, * * *, m}, m = 
1, 2, . * *, a sequence of discrete subsets of [a, b] with a = x < xi < < xm = b 

for each m. Suppose Mum = maxi?i5m Ix; - xij, -0 as m -> . Let pm be a best 
L, approximation from below to f on Xm with weights a(x3)(xJ - xi-,). Then there 
exists a subsequence of {p,,,} which converges uniformly to a best weighted L1 approxi- 
mation to f from below on [a, b]. If the latter best approximation is unique, then p,,, 
converges to this best approximation as m -* c. 

Proof. First it will be shown that {pm} is uniformly bounded on [a, b]. Let p* be 
a best weighted L1 approximation from below to f on [a, b]. Set 

rb 

* f J -(x)(f(x)-p*(x)) dx, 

m 

O-m = a i(xj)(f(xi) - p*(xi))(x3i -xi-0. 
i-i 

By the definition of pm and the fact that p*(xi) < f(xi) for all xi E Xm we have 

0m = a a(xj)(f(x,) - Pm(X,))(xi xi-,) 

a E (xi)(f(x;) - p*(xj))(xi -xi-,) 

_ * + I for all m _ some M1 by Lemma 1. 

Hence 
in 

c(X) IPm(X,)I (xi - xi-0) < * + I + (b - a) max (a(x)f(x)l C 
j-l xE[a,bI 

some constant. 
Now let I, * -, I, be n closed disjoint subintervals of[a, b], each of length (b - a)/2n 

say. -Choose M2 so that Mm _ (b - a)/6n for all m 2 M2. Set 5i = { j: [xi-,, xi] C Ii }, 
i 1, ,n. Then 

a )(x1) jpm(Xf-j (xi -xi-,) (M (X)) (xi -xi-0 
iEla,bl iEeig 

_ A (min fpmXi)I)(b n a) 

where 

A- min a(x) > 0 since a(x) > 0 for all x E [a, bl. 
IE[a,b] 
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Hence there exists some constant, say E, such that minicgi lp.(xi) < _ E for i= 1, * * , n 
and all m. Now let ti C X7, C\ 1, be a point such that min,4,i lp..(xi)l = lp"(t)], 
i== 1, ,n. Set 

D(zl, z, 4 Zn) = (*r) 

Then the generalized Lagrange interpolation polynomial which assumes the value yi 
at zi (i = 1, ,n) is 

DUz, , z-l5 xI Zi+15 
.. , Z.) 

p(x) = 3 (, . 
)D(zl, Z.) 

Hence 

P.(X) = E P.(ti) (, , _, tl ,t) 
i-1 D(tl~~1, , tni, 

Since ti & Ii (i = 1, * , n) and the Ii are closed and disjoint, {&l, n *, 4n} being 
a Chebyshev system implies there exists D such that ID(tl, * * , t>)j ? D > 0 inde- 
pendent of m. Hence 

E n 

max Ipt4(x)I < D : max ID(t1, , ti_1, x, t +i, * * *, tn) 
xE[a.b] a Db=1 zE[a,bl 

? F some constant, independent of m. 

Thus {pm} is uniformly bounded. 
Now let {pmk } be a uniformly convergent subsequence with limit, say, po. We wish 

to show po is an approximation from below to f on [a, b]. Suppose not, that is, 
assunme there exists x* C [a, b] with f(x*) - p0(x*) = --y < 0. By the continuity 
of f at x* we can find M3 so that Ix* - yj < IUM. implies If(x*) - f(y)j < y/4. 
By the uniform convergence of P, to po we can find M, so that mk ? M4 implies 
maxzG[a, b] lpm k(x) - po(x)I < -y/4. By the continuity of po at x* we can find M5 so 
that iY - x I < i,UM implies Po(y) - p,(x*) I < y /4. Now let M be an index from 
the subsequence {mk} such that M > M4, A m ,A3, /M _ M Let y C X11 

with 1x* - y < ,. Then 

-z = f(x*) -pO(x*) 

= (f(x*) AY()) + (f(Y) -P Ir(Y)) + (PM(Y) - PO(Y)) + (PO(Y) -P,(X*)) 

_ - if(X*) - f(y)A + 0 IPM(Y) - PO(Y) - PO(Y) - PO(X*)| 

> -3y/4 a contradiction, since y > 0. 

Hence f(x) - po(x) ? 0 for all x G [a, b]. 
Next set ao = fab(x)(f(x) - po(x))dx. To show ao = a. Let E > 0 be given. 

Since pm * converges to po we can find M6 such that mk > M, implies 
b 

(2.3) o - a( (X) | f(x) - Pnak(X)| dx < E/ 3 
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By Lemma 1 there exists M7 such that m, ? M7 implies 
mk 

(2.4) - E a(x )(f(xi) - p*(x))(xi - xi-,) K/ 3. 
i-i 

Again by Lemma 1 we can find N with N > M6, N > M7 such that 
|b 

(2.5) a(x) If(X) - PN(X) dx - N < e/3. 

Hence K - o^- < 2E/3 by (2.3), (2.5). Now 
N 

07N < Z a(xi)(f(x7) - p*(x,))(x7 - x-1) < * + e/3 
i 1 

from (2.4). Thus a* _ ?o _? aN + 2E/3 _ * + e. Sinice e was arbitrary we have 
a = * and po is a best approximation to f from below on [a, b]. If p* is unique 
then po = p*. Since any convergent subsequence of the uniformly bounded sequence 
pm converges to p *, the sequence pm. converges to p *. 

3. Numerical Examples. In this section numerical experience with the com- 
putational procedure is discussed. We consider the special case of approximation by 
ordinary polynomials (pi(x) = xi-) with weight function a(x) 1. We will take 
sets Xm of the form 

Xm = {xi: i = 1, * , m} = {a + (j/m)(b - a): j = 1, *, m;, 

i.e. evenly spaced partitions of [a, b]. The problem (2.1), (2.2) is then the linear pro- 
gramming problem: 

b m n\ 

min b- a f (xi) a, x) 
a i, -,,an 1i =li- 

subject to 

,a (xi)'-' < f(x ), j i ,,n. 
i =l 

This is equivalent to the problem: 

(3.1) max Eai Z (x;)i) 
a,-***,a, i=1 i 

n 

(3.2) subject to Ea, (xj)' 1 < f(x,), j 1, * , m. 
i=1 

The techniques for solving linear programming problems are well developed, cf. [4] 
or [5]. In the problem (3.1), (3.2) n is the number of variables and m the number of 
constraints. Since m will be much larger than n and since the amount of computation 
depends primarily on the number of constraints, it is better to solve the dual problem 
of (3.1), (3.2), cf. [5, Chapter 8]. This is the problem: 

m 
(3.3) min E uif(xi) 
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(3.4) subject to E ui(x))i- Z (xi)il, i- 1, *,n 

and u. _ 0, j = 1, ..., m. 
This problem is in standard form for the application of the simplex method. 

For various reasons, including the amount of storage space required, it is advan- 
tageous to use the revised simplex method on a computer. The revised simplex method 
was programmed as a subroutine and used to solve the above linear programming 
problem (3.3), (3.4). Although degeneracy was present, that is the objective function 
did not change during some iterations, no cycling was encountered in tle examples 
run. All computations were in double precision on the IBM System 360/50. A tol- 
erance of 10"1 was used in deciding whether a basic feasible solution had been 
reached and in deciding if the optimal solution had been obtained. In the following 
examples the problem is to find the best L1 approximation from below on [-1, 1 
to the given function by a cubic polynomial a, + a2x + a3x2 + a4x3. 

Example 1. f(x) = exp (x). 
Since f'4'(x) > 0 on [-1, 1] an explicit solution is available using Theorem 1. 

This solution is obtained by interpolating f and f' at the zeros 14V3/3 of the quad- 
ratic polynomial (here the Legendre polynomial) orthogonal to 1, x on [- 1, 1]. 
After some algebraic manipulation we obtain from (1.2) (setting R = V/3/3): 

p(x) 
(2- eR + 

(2+R) e + ((- + 9R)e (1 + 9R) e.R? 
4 4 ) 4 4 / 

+ x2(3Rea - 3ReR) + X3((3 - 9R)Rel + (3 + 9R)eR 

Table I gives the results (rounded to five decimal places) of solving the problem 
on the finite point subset Xm of [-1, 1] by the revised simplex method. According 
to the theory in Section 2 the solution on Xm tends to the solution on [-1, 1] as 
m -* o. Observe that with a mesh size of .002 (m = 1000) each parameter of the 
solution on Xm agrees with the corresponding parameter of the solution on [-1, 1] 
to four decimal places. 

TABLE I 

m 20 80 200 1000 Exact Solution 
mr/b-a .1 .025 .01 .002 

a, .99244 .99493 .99501 .99527 .99527 
a2 .99850 .99900 .99901 .99906 .99906 
a3 .53619 .52926 .59901 .52821 .52824 
a4 .17386 .17247 .17244 .17228 .17229 

# iterations 6 10 13 19 

Example 2. f(x) = x4. 

Since f4)-(x) _ 0 on [-1, ]] the exact solution can be obtained as in Example 1. 
It is p*(x) = - 1/9 + 2x2/3. Convergence is not as rapid as in Example 1. 
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TABLE II 

m 20 80 200 1000 Exact Solution 
mr/b-a .1 .025 .01 .002 

a1 -.17634 -.11902 -.11710 -.11084 -.11111 
a2 0 0 0 0 0 

a3 .85000 .69062 .68450 .66586 .66667 
a4 0 0 0 0 0 

# Iterations 6 10 13 18 

Example 3. 

f(x) =exp (x), -1 < x < O, 

-1 +x, 0 < x < 1. 

f is differentiable so the best approximation from below is unique. However, f" 
does not exist at zero; hence no explicit solution is available. 

TABLE III 

m 20 80 200 1000 
ml/b-a .1 .025 .01 .002 

a1 .99569 .99588 .99584 .99586 
a2 .92841 .93212 .93188 .93207 
a3 .18705 .18588 .18598 .18590 
a4 -.11355 -.11824 -.11794 -.11818 

# iterations 4 7 8 13 

Example 4. 

f(x) = exp (-x2), -1 < x < O, 

= +X29, O<0 x <1. 

Again, f' exists butf" does not. 

TABLE IV 

m 20 80 200 1000 
mr/b-a .1 .025 .01 .002 

a1 .94370 .95465 .95464 .95463 
a2 .38473 .35291 .35298 .35299 
a3 .20238 .17109 .17098 .17100 
a4 .46919 .52135 .52140 .52139 

h iterations 6 9 8 14 
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This procedure demonstrates the utility of linear programming in solving prob- 
lems in approximation theory, see also [10]. Since the constraint matrix is "thin", 
one dimension being the number of parameters in the approximating function, 
storage problems were not encountered. Computing time for m = 1000 was about 
30-40 seconds. 
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